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ABSTRACT

Electrohydrodynamic (EHD) flows are driven by the interaction of an electric field with

variations in electric conductivity or dielectric constant. In reported EHD experiments on the

deformation of drops of immiscible dielectric fluids, the role of conductivity has tended to

overshadow the role of dielectric constant. Often, large conductivity contrasts were convenient

because the conductivities of the dielectric fluid were relatively uncertain. As a result, the

observed effects were always qualitatively the same as if there had been no contrast in dielectric

constant.

Our early experiments (5) studying the EHD deformations of cylindrical streams readily

showed the conductivity effect but the dielectric constant effect was not discernible. We have

modified our flow chamber and improved our method of observation and can now see an

unequivocal dielectric constant effect which is in agreement with the theory given in (5).

In this paper we first give a brief description of the physics of charge buildup at the interface

of an immersed spherical drop or flowing cylindrical sample stream and then show how these

charge distributions lead to interface distortions and accompanying viscous flows which

constitute EHD. We next review theory and experiment describing the deformation of spherical

drops. We show that in the reported drop deformation experiments, the contrast in dielectric

constant was never sufficient to reverse the deformation due to the conductivity contrast.

We review our work (5) describing the deformation of a cylindrical stream of one fluid

flowing in a parallel flow of another, and we compare the deformation equations with those for

spherical drops. Finally, we show a definite experimental dielectric constant effect for a

cylindrical stream of aqueous polystyrene latex suspension. The dielectric constant varies with

the frequency of the imposed electric field, and the associated EHD flow change is very

apparent.



Introduction

Electrohydrodynamics(EHD) describesfluid flows drivenby externalelectricfields andby

thechargeandpolarizationdistributionsinducedbythosefields.Theseflowsarethusgenerally

proportionalto thesquareof the imposedelectricfield. For alternatingcurrent(AC), thesteady

componentof theflow isproportionalto themeansquarefield. Theoscillatorycomponentof the

flow (with doubledfrequency)isgenerallynegligible,becausemomentumkeepsit small,or

becauseit oscillatesandgetsnowhere.

By wayof contrast,considerthecommonoccurrenceof electroosmoticflow in anopenfluid

systemasshownin Figure1.Thewall carriesa netnegativechargeandhenceattractspositive

counter-ionsfrom thefluid to form apositivechargelayer(doublelayer)at thewall. The

presenceof theelectricfield causesthesehydratedpositive ionsto movetowardthenegative

electrode.Theviscousactionof thefluid extendsthis motionthroughoutthechamberto causea

plugflow to theright, towardthenegativeelectrode.Note thatthechargedistributionispresent

evenwhenthereis no imposedelectricfield, andthattheflow is thereforeproportionalto the

imposedfield. With AC, thereis nosteadycomponentto theelectroosmosisflow, andthe

oscillationis generallyof no importance.

InducedChargeandTransientsTime Scalein EHD

We now analyzehow externalfieldsestablishachargedistribution.Fromchargecontinuity,

Ohm'slaw,andMaxwell'sequations,

qv = -V- ]

= -V. (or/3 / K)

= -D. V(rr / K) - (4rrrr / K)q v.

[1]
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Hereqv is the volume charge density, and o and K are the conductivity and dielectric constant.

We are using electrostatic units (esu), so that K is also the electrical permittivity. The vectors ]

and b are the current density and electric displacement, given in terms of the electric field by

Equation [1 ] shows first that transient charges decay in a time (K/4rco), which is of order

10 -9 seconds or less for practical aqueous fluids. Secondly, the charge density approaches the

value given by setting the left hand side of Eq. [ 1] to zero. The quasi-steady volume charge

density is

4Zrqv = -(K / o)D.V(o/ K)

= +(o / K)/). V(K / o-)

= +j. V(K / a).

[21

The post-transient quasi-steady charge density qv is non zero whenever the ratio K/_r varies along

the field lines. And third, after the charge distribution has been established,

V.]=O. [31

This equation is solved for the potential distribution in any particular case.

The analogous equation for the transient surface charge density qs at an interface is

O_= -J.2 + J.l. [4]
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ThenormalcomponentJn of the current density is measured from side 1 to side 2 of the interface,

and the difference of the two values determines the rate of increase of the surface charge density

qs. Using

] = ((7/K)/), [5]

and a difference identity,

m

,dis = -Dn(02 / K2 - crl / KI) - (ty / K)(Dn2 - Dnl)

=-Dn(O 2 / K 2 - crI / Ki)-(ty/ K)(4_qs).
[6]

Here the overbars denote averages of the values on the two sides of the interface. The quantity

47rqs is the jump in the normal component of /). The qs multiplier is the reciprocal of the

transient time scale, as before. Once the transients have decayed, the two normal components of

j are equal in Eq. [4], and the quasi-steady surface charge is given by

41rqs = Dn2 - Dnl

= in(K2 / a 2 -K 1 / 01).
[7]

This equation is closely analogous to Eq. [2] for the continuous case.

Induced Charge for a Drop or Cylinder

In this study we consider the EHD flows associated with spheres or circular cylinders of an

inside fluid in a surrounding outside fluid. We review theoretical and experimental work done by

others and ourselves, and attempt to explain their structure and sign physically. Figure 2 shows
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thesphericalor cylindricalgeometry,andaddselectrodesto indicateanimposed field direction

from left to right.

From Eq.s [1] and [2] there is no induced charge in the homogeneous regions. Charge is

induced only at the interface.

From Eq. [7] the surface charge is

4rCqs = jn(Ko / _ro - K i / cri). [81

Defining the conductivity and dielectric constant ratios as

R= cri l cro, [9]

S = K i / K o, [10]

Equation [8] can be rewritten as

4rCqs = (R - S)._K o / a i. [11]

The current in Figure 2 is from left to right. So on the right half of the interface the outward

normal current jn is positive, and the interface charge density qs has the same sign as (R-S). Thus

qs is negative on the right in Figure 2a, where

R < 1 < S. [12]

and positive on the right in Figure 2b, where
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R > 1 > S. [13]

On the left half of the interfaces in Figure 2, the outward normal current jn is negative, and the

induced charge in Figures 2a and 2b has the opposite sign, as shown.

Flow Calculation

Once the electric field solution and the associated induced charge density have been found,

the corresponding flow is determined by solving the Navier-Stokes equations, with the electric

forces included. The electric forces can be equivalently expressed either in terms of the Maxwell

stress tensor (convenient for interface boundary conditions) or as the sum of the electric forces

on the charge density and on the dipole distribution associated with the dielectric constant.

On the scales of interest, fluid momentum can normally be neglected. The flow is therefore a

balance between the electric forces, viscosity, and pressure gradients, with the incompressibility

condition. Interface surface tension must be included in determining the change of shape of

drops.

We have chosen not to give details in this review. But inspection of Figure 2a suggests that

with the electric field from left to right, the electric forces pull the positive and negative charges

towards each other, flattening the circle normal to the electric field. And in Figure 2b, the electric

forces on the positive and negative surface charge distributions pull them apart, tending to

elongate the circle toward the electrodes.
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This is confirmedby thedetailedcomputationsfor thedropandcylindricalgeometries.For

thetwo specialcases(12)and(13)shownin Figures2aand2b, theinclusionof thedipole

electricforcesdoesnotchangethesolutionqualitatively.

On theotherhand,whenR and S are either both greater than unity or both less than unity,

dielectric forces can change the qualitative picture. In particular, Eq. [11] shows that for

R -- S there is no induced charge on the surface. But the detailed calculations show non zero EHD

flow in this case, except in the trivial case R-- S-- 1.

Theory of Drop Deformation

This early work on EHD flows was concerned with drop deformation, and used immiscible

fluids. A neutrally buoyant spherical drop of one fluid in the other distorted against surface

tension by the application of a uniform AC field, and the shape distortion was measured and

compared with theory.

The theory for conducting fluids was given by Taylor (1), and is known as Taylor's "leaky

dielectric" model. Taylor obtains the drop deformation (defined as the difference of the drop axis

lengths (diameters) divided by their sum, and positive for a prolate spheroid) in the form

o91 ]o/l"},(2 + R) 2
[14]

In this equation, 7 is the surface tension, a the drop radius, E the imposed root mean square

electric field, and the dimensionless discriminating function is
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= I+R 2-2S+N(R-S). [15]

Here

6M+9
N - [16]

5M+5'

M = ]-/i / l/o , [ 17]

and _i and l-to are the inner and outer viscosities. Thus N decreases from 1.8 to 1.2 as the

viscosity ratio M increases from zero to infinity, and is 1.5 when M is 1. Note that Taylor used

the reciprocal S definition to our Eq. [10], so we have changed his results appropriately to obtain

our Eqs. [14] and [15].

If _ is positive, the spherical drop is elongated in the electric field direction, into a prolate

spheroid. If • is negative, the drop is flattened normal to the electric field direction, into an

oblate spheroid.

Drop Deformation Experiments

Many reported EHD studies have measured the electrical deformation of spherical drops,

using various combinations of immiscible fluids. In this review, we emphasize the significance

of dielectric constant effects. In our view, none of these reported results unequivocally

demonstrated such effects, since in all cases the sign of the discriminating function (6) was the

same as if the dielectric constant ratio had been 1. Note that from Eq. [6] the critical value of the

dielectric constant ratio S is
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1+NR+ R 2
S(R) = [18]

2+N

Figure 4 shows the critical S value as a function of R ,for the three N values indicated. Note that

the viscosity ratio plays only a minor role. For subcritical S values (below and to the right of the

curve), the drop becomes a prolate ellipsoi d, elongated in the field direction. For supercritical S

values (above and to the left of the curve), the drop becomes an oblate ellipsoid, flattened normal

to the field direction. Intermediate R values have been avoided in the reported results, apparently

due to the conductivity difficulties. For large R, the critical S value is very large, while for R

close to zero, it is just 1/(2+N), or about 0.3, as figure 4 shows.

An unequivocal demonstration of a dielectric constant effect in EHD requires a sign change

in the drop distortion. For R < 1 this requires that S is less than the critical value, while for R > 1

it requires that S is greater than the critical value. Otherwise we can say that the sign of the

discriminating function _ given by Eq. [15] is "controlled" by R.

In these admittedly difficult experiments, measuring and controlling the conductivities and

controlling the interface surface tension are often the hardest problems. Fortunately, in Eq. [14],

_/(2+R) 2 simplifies to 1 for large conductivity ratio R and to (1-2S-NS)/4 for small R.

Allml and Mason (2) reported drop deformation experiments with 13 different combinations

of fluids. In all cases the observed deformation correlated with _, and was also that expected for

the measured conductivity ratio R. The experimental R values ranged up from 15, or down from

1/15. In terms of Eqs. [14] and [15], these experiments did not demonstrate a dielectric effect; the

results were qualitatively the same as if S had been unity.
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Concerningthedifficulty of thesedropexperiments,MelcherandTaylor (7) makethe

following statement."Electrostaticeffectsin fluids areknownfor their vagaries:often theyare

soextremelydependentonelectricalconductivitythat investigatorsarediscouragedfrom

carefullyanalyticmodelsandsimpleexperiments."Theproblemsincludemaintainingpurityand

consistencyfor thesamplefluids,andconductivitychangesdueto diffusionof solutesacrossthe

interface.

Torza,Cox,andMason(3)reported22 fluid combinations,whichwereall controlledby the

conductivityratio R. Similarly, Vizika and Saville (4) reported l I fluid combinations; also

controlled by R. In the small R cases in (2) through (4), the smallest S value was 0.44, or

substantially above the critical value of 1/(2+N). A smaller value would have provided an

unequivocal demonstration of dielectric constant effects in EHD.

Dielectric Constant of Aqueous Suspensions

Clays and aqueous suspensions can be polarized, and act as homogeneous fluids with very

high dielectric constants. This phenomenon is associated with the electrochemical charge double

layer on each particle, like the layer shown earlier in Figure I. As the particle and its surrounding

charge cloud respond to the external field, and undergo electroosmosis, they also become a

dipole. The higher the frequency for AC, the less time there is for the charge to move. Thus K

decreases with increasing frequency, as shown in Figure 3.

The dielectric constant of a suspension is measured experimentally by using an accurate

bridge technique to determine the complex resistance of an electrolytic cell, as a function of

frequency. This is not easy, and comparisons with theory have been mixed.
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We areinterestedin supplementingexistingtechniquesby usingEHD asanindependent

methodfor determiningthedielectricconstantof suspensions.

Overthelastseveralyearswehavestudiedthedeformationof cylindrical samplestreams

consistingof dispersionsof polystyrenelatex (PSL)microspheres(5,6).Thesampleis drawn

intoa fine filamentasit is injectedinto aflowing carrierbuffer.Themajordifferencebetween

oursystemandtheimmiscibledropsystemdiscussedpreviouslyis theabsenceof surface

tensionin ourcase.Theapplicationof auniform electricfield to thecylindrical samplefilament

will progressivelydistort thesamplestreaminto aribbon.Theorientationof theribbondepends

on theratiosof dielectricconstantandelectricalconductivitybetweenthebuffer andsample.

Thesedistortionsaretheresultof EHD flows in boththesampleandbuffer. Theleakydielectric

modelof Taylor isagainusedto determinethedegreeandorientationof thesamplestream

distortion.

Fora circularsamplestreamof propertiesshownin Figure2, weshowed(5) thattheradial

EHDvelocity u atthe interfaceis givenby

u = FD cos 20, [19]

where the amplitude function is

F -- aE2K°

12 zr(/.t i +/to)(R + 1)2
[20]

and the discriminating function is

D--R2 + R+ 1 -3S. [21]
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Here0 is the polar coordinate angle measured from the electric field direction. Note that the

angular dependence cos 20 implies distortion of the circular sample section to an ellipse. From

qualitative theoretical study (5) and from all our observations, this distortion continues until the

sample becomes a flattened ribbon, either aligned with the field or perpendicular to it.

Note the similarity between this discrimination function D given by Eq. [21 ], and the earlier

function • for drop deformation, given by Eq. [15]. Both are different from the approximate

discriminating function (R-S) suggested by Eq. [11] and by the qualitative approximation of

considering only the forces on free charges in computing the flow. Remarkably, Eq. [21] can be

obtained from Eq. [15] by setting the function N of the viscosity ratio to unity. The critical S(R)

for a cylinder makes D zero, and is shown in Figure 4, with the corresponding plots for drops. At

smaller S values, the cylinder elongates in the field direction, forming first an ellipse and then a

ribbon.

Limitations of the Theory

There are a number of problems with the theory and with its application to our experiments

using nozzle injection to produce a circular cylinder with a sharp interface.

The solution is valid only as long as the sample stays approximately circular. It can't

describe the late stages of collapse to a ribbon; nor can it even guarantee that all cases will

eventually collapse to a ribbon. Further, if the ribbon has only been deformed a little,

measurements of the deformation must be less precise. Precise determinations can still be made,

for example, of conditions for the sample to remain circular.
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Thesolutionis poorcloseto thenozzle,sincethenozzledistortsboth the electric field

distribution and the flow of both fluids. Equating time with distance downstream from the nozzle

divided by some mean speed is not accurate. Better accuracy is possible by taking an origin

perhaps 5 diameters downstream from the nozzle, and observing the further distortion from that

point onward.

The assumption of an infinite fluid is wrong; there are chamber boundaries at some finite

distance. So is the neglect of momentum; at some large distance momentum forces become

comparable with viscous forces. Both problems are minor; the relative error involved in the flow

near the cylinder is of order the square of the ratio of the cylinder radius to the larger distance.

The application of a "two-dimensions-plus-time" formulation, with downstream derivatives

neglected or approximated, is approximately valid only away from the nozzle and from the

chamber walls, and only if the downstream length scale is large compared with the cylinder

radius.

The assumption of a discontinuity in conductivity and dielectric constant is invalid, since

there will be diffusion near the interface. But solute diffusivities are very low, while particle

diffusivities are zero. The flow speeds are low and the length scale small, so there is no turbulent

mixing. And both analytic and numerical studies have convinced us that whether the interface

change is discontinuous or is spread smoothly over even a quarter of the radius, it makes very

little difference to the flow solution.

PSL Sample Stream Distortion Experiments
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In ourexperimentswith samplestreamdistortion,wecouldvarytheconductivityof both

fluids. But wecouldnotatfirst find adielectricconstanteffect.Partof theproblemwasthelow

sensitivityof ourearlysystem,which wasanelectrophoresistypechamberlimitedto 30V/cm.

In addition,wewereexpectingK valuesfrom 200to 1000andhigher,basedon published

literaturefor PSLsuspensions.In fact, it appearsthatour samplesweremuchcloserto thewater

andbufferK valueof 80.

We improvedthesensitivityof ourmethodby usingasmallsquarechamber,allowing fields

up to 300V/cm, andby observingthedistortedstreamusingamicroscopesystemwith a CCD

cameraandvideomonitor,at62.5magnification.Physically,thesamplestreamdistortionwas

increasedby afactorof 100,becauseof theE 2 dependence shown in Eq. [ 14]. Thus, our

sensitivity improved by a factor of 6,250.

With this system we have been able to demonstrate the EHD effects of the variations of

dielectric constant with frequency, as shown in Figure 3. These demonstrations are now

repeatable.

Figure 5 shows eight views of steady EHD flows in our apparatus. The eight percent sample

is injected through the circular nozzle just visible on the right. The transparent buffer, with

matched conductivity, also enters the chamber from the right.

In Figure 5a there is no applied field, and the PSL passes along the chamber as a circular

cylinder of constant diameter. The changes in cylinder diameter near the nozzle are associated

with the nozzle drag on the buffer and PSL flow and with the viscous adjustment to a more

uniform downstream flow profile.
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In therestof Figure5 thereisa fixedexternalAC electricfield in theviewing direction;

only the frequency is varied. No changes are made in the buffer or sample fluids or flow rates. In

Figure 5b, at 100,000 Hz, R and S are 1, and there is no EHD flow. At lower frequencies S

increases, according to Figure 3 and Eq. [10]. This makes the discriminant (21) increasingly

negative, so that the circular sample stream is progressively flattened into a ribbon normal to the

field, as it passes downstream to the left. For the lowest frequency of 28 Hz, this flattening is

very rapid.

This series of photographs vividly shows the dielectric constant effect on EHD, and its

variation with frequency, for a PSL sample filament. It also suggests a method for the

measurement of dielectric constant. The stream at each frequency can be brought to zero

deformation by adjustment of the conductivity ratio R. This value of R can then be used in Eq.

[21] (with D -- 0) to calculate S and, hence, Ki.

The PSL particles were made using a recipe without emulsifier, and each polymer (styrene)

chain is terminated with a sulfate and end group at each end. The sample was sonicated and

centrifuged, and then placed in phosphate buffer to form the sample stock. The final conductivity

was adjusted using distilled water. The buffer used had a pH of 7.08.

Conclusions

We believe that the sample stream distortions which are shown in Figure 5 are the first

experimental evidence of the dielectric constant effect in conducting fluids to appear in the

literature. We are continuing work on our miniature flow chamber to improve the uniformity of

the electric field while still maintaining clear observation of the sample stream when viewed

parallel to the field. We will now quantify a selection of PSL with respect to debye length (_i),

zeta potential 4, and panicle radius a. The dielectric constant of this selection can then be
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determinedasafunctionof frequencyv by themethodpreviouslydescribed.This datawill then

bedescribedby aCole-Colerelaxationfrequencydistributionwhichcanbecomparedto the

standardmodelof DelacyandWhite(8) andto dielectricspectroscopymeasurementsof Myers

andSaville(9).
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FigureLegends

Fig. 1.Electroosmoticflow example.

Fig. 2. Chargedistributionat theinterfaceandresultingEHD flows. (a)Chargedistributionfor

Ki > Koandci < Oo producing distortion normal to the field (oblate). (b) Charge distribution for

KI < Ko and oi > Oo producing distortion parallel to the field (prolate).

Fig. 3. Variation of dielectric constant with frequency v for a typical PSL suspension.

Fig. 4. Critical dielectric constant ratio as a function of the conductivity ratio, for drops and

cylinders. For drops, N is the function (16) of the viscosity ratio. Below and to the right of the

critical value curve, the drop or cylinder elongates in the field direction.

Fig. 5. Sample stream distortions viewed parallel to the AC electric fields at varying frequency.

8% PSL. (a) 100 volts RMS. 28 Hz frequency. (b) 100 volts RMS. 100 Hz frequency. (c) 100

volts RMS. 1000 Hz frequency. (d) 100 volts RMS. 5000 Hz frequency. (e) 100 volts RMS.

10000 Hz frequency. (f) 100 volts RMS. 50000 Hz frequency. (g) 100 volts RMS. 100000 Hz

frequency. (h) Zero electric field.
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Figure 2. Charge Distribution at the Interface
and Resulting EHD Flows
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for drops and cylinders. For drops, N is the function (16) of the viscosity

ratio. Below and to the right of the critical value curve, the drop or cylinder

elongates in the field direction.
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5a. Zero Electric Field 5e. 100 Volts RMS. 5,000 llz Frequency

!

1[ _L_ ....

5b. 100 Volts RMS. 100,000 Hz Frequency 5f. 100 Volts RMS. l'00Oiiz Frequency

=-

5c. 100 Volts RMS. 50,000 tlz Frequency 5g. 100 volts RMS. 100 llz Frequency

5d. 100 Volts RMS. 10,000 llz Frequency 5h. 100 Volts RMS. 28 Ilz Frequency

Figure 5 Sample stremn distortions viewed parallel to the AC electric fields at

varying frequency. 8% PSL


